Answer
$\begin{array}{*{20}{c}}
{{\bf{T}}\left( 1 \right) = \left( {\frac{1}{3},\frac{2}{3},\frac{2}{3}} \right)}\\
{{\bf{N}}\left( 1 \right) = \left( { - \frac{2}{3}, - \frac{1}{3},\frac{2}{3}} \right)}\\
{{\bf{B}}\left( 1 \right) = \left( {\frac{2}{3}, - \frac{2}{3},\frac{1}{3}} \right)}
\end{array}$
Work Step by Step
We have ${\bf{r}}\left( t \right) = \left( {t,{t^2},\frac{2}{3}{t^3}} \right)$. The point $\left( {1,1,\frac{2}{3}} \right)$ corresponds to $t=1$.
The tangent vector is ${\bf{r}}'\left( t \right) = \left( {1,2t,2{t^2}} \right)$. So, the unit tangent vector is
${\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{||{\bf{r}}'\left( t \right)||}} = \frac{{\left( {1,2t,2{t^2}} \right)}}{{\sqrt {\left( {1,2t,2{t^2}} \right)\cdot\left( {1,2t,2{t^2}} \right)} }}$
${\bf{T}}\left( t \right) = \left( {\frac{1}{{\sqrt {1 + 4{t^2} + 4{t^4}} }},\frac{{2t}}{{\sqrt {1 + 4{t^2} + 4{t^4}} }},\frac{{2{t^2}}}{{\sqrt {1 + 4{t^2} + 4{t^4}} }}} \right)$
${\bf{T}}\left( t \right) = \left( {\frac{1}{{\sqrt {{{\left( {1 + 2{t^2}} \right)}^2}} }},\frac{{2t}}{{\sqrt {{{\left( {1 + 2{t^2}} \right)}^2}} }},\frac{{2{t^2}}}{{\sqrt {{{\left( {1 + 2{t^2}} \right)}^2}} }}} \right)$
${\bf{T}}\left( t \right) = \left( {\frac{1}{{1 + 2{t^2}}},\frac{{2t}}{{1 + 2{t^2}}},\frac{{2{t^2}}}{{1 + 2{t^2}}}} \right)$
At $t=1$, we get ${\bf{T}}\left( 1 \right) = \left( {\frac{1}{3},\frac{2}{3},\frac{2}{3}} \right)$.
To evaluate ${\bf{T}}'\left( t \right)$:
1. Evaluate $\frac{d}{{dt}}\left( {\frac{1}{{1 + 2{t^2}}}} \right)$
$\frac{d}{{dt}}\left( {\frac{1}{{1 + 2{t^2}}}} \right) = \frac{d}{{dt}}\left( {{{\left( {1 + 2{t^2}} \right)}^{ - 1}}} \right)$
$\frac{d}{{dt}}\left( {\frac{1}{{1 + 2{t^2}}}} \right) = - \left( {4t} \right){\left( {1 + 2{t^2}} \right)^{ - 2}} = - \frac{{4t}}{{{{\left( {1 + 2{t^2}} \right)}^2}}}$
2. Evaluate $\frac{d}{{dt}}\left( {\frac{{2t}}{{1 + 2{t^2}}}} \right)$
$\frac{d}{{dt}}\left( {\frac{{2t}}{{1 + 2{t^2}}}} \right) = \frac{{2\left( {1 + 2{t^2}} \right) - \left( {2t} \right)\left( {4t} \right)}}{{{{\left( {1 + 2{t^2}} \right)}^2}}}$
$\frac{d}{{dt}}\left( {\frac{{2t}}{{1 + 2{t^2}}}} \right) = \frac{{2 - 4{t^2}}}{{{{\left( {1 + 2{t^2}} \right)}^2}}}$
3. Evaluate $\frac{d}{{dt}}\left( {\frac{{2{t^2}}}{{1 + 2{t^2}}}} \right)$
$\frac{d}{{dt}}\left( {\frac{{2{t^2}}}{{1 + 2{t^2}}}} \right) = \frac{{4t\left( {1 + 2{t^2}} \right) - \left( {2{t^2}} \right)\left( {4t} \right)}}{{{{\left( {1 + 2{t^2}} \right)}^2}}}$
$\frac{d}{{dt}}\left( {\frac{{2{t^2}}}{{1 + 2{t^2}}}} \right) = \frac{{4t}}{{{{\left( {1 + 2{t^2}} \right)}^2}}}$
Thus, ${\bf{T}}'\left( t \right) = \left( { - \frac{{4t}}{{{{\left( {1 + 2{t^2}} \right)}^2}}},\frac{{2 - 4{t^2}}}{{{{\left( {1 + 2{t^2}} \right)}^2}}},\frac{{4t}}{{{{\left( {1 + 2{t^2}} \right)}^2}}}} \right)$
At $t=1$, we get
${\bf{T}}'\left( 1 \right) = \left( { - \frac{4}{9}, - \frac{2}{9},\frac{4}{9}} \right)$
$||{\bf{T}}'\left( 1 \right)|{|^2} = \frac{{16}}{{81}} + \frac{4}{{81}} + \frac{{16}}{{81}} = \frac{{36}}{{81}} = \frac{4}{9}$
$||{\bf{T}}'\left( 1 \right)|| = \frac{2}{3}$
The normal vector at $t=1$,
${\bf{N}}\left( 1 \right) = \frac{{{\bf{T}}'\left( 1 \right)}}{{||{\bf{T}}'\left( 1 \right)||}}$
${\bf{N}}\left( 1 \right) = \frac{3}{2}\left( { - \frac{4}{9}, - \frac{2}{9},\frac{4}{9}} \right)$
${\bf{N}}\left( 1 \right) = \left( { - \frac{2}{3}, - \frac{1}{3},\frac{2}{3}} \right)$
By Eq. (8), the binormal vector at $t=1$ is given by
${\bf{B}}\left( 1 \right) = {\bf{T}}\left( 1 \right) \times {\bf{N}}\left( 1 \right)$
${\bf{B}}\left( 1 \right) = \left| {\begin{array}{*{20}{c}}
{\bf{i}}&{\bf{j}}&{\bf{k}}\\
{\frac{1}{3}}&{\frac{2}{3}}&{\frac{2}{3}}\\
{ - \frac{2}{3}}&{ - \frac{1}{3}}&{\frac{2}{3}}
\end{array}} \right|$
${\bf{B}}\left( 1 \right) = \left( {\frac{4}{9} + \frac{2}{9}} \right){\bf{i}} - \left( {\frac{2}{9} + \frac{4}{9}} \right){\bf{j}} + \left( { - \frac{1}{9} + \frac{4}{9}} \right){\bf{k}}$
${\bf{B}}\left( 1 \right) = \frac{2}{3}{\bf{i}} - \frac{2}{3}{\bf{j}} + \frac{1}{3}{\bf{k}}$
In summary, we obtain
$\begin{array}{*{20}{c}}
{{\bf{T}}\left( 1 \right) = \left( {\frac{1}{3},\frac{2}{3},\frac{2}{3}} \right)}\\
{{\bf{N}}\left( 1 \right) = \left( { - \frac{2}{3}, - \frac{1}{3},\frac{2}{3}} \right)}\\
{{\bf{B}}\left( 1 \right) = \left( {\frac{2}{3}, - \frac{2}{3},\frac{1}{3}} \right)}
\end{array}$