Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 735: 37

Answer

The normal vector is ${\bf{N}}\left( t \right) = \left( {0, - \sin 2t, - \cos 2t} \right)$.

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {4,\sin 2t,\cos 2t} \right)$. The tangent vector is ${\bf{r}}'\left( t \right) = \left( {0,2\cos 2t, - 2\sin 2t} \right)$. We find the unit tangent vector ${\bf{T}}\left( t \right)$: ${\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{||{\bf{r}}'\left( t \right)||}} = \frac{{\left( {0,2\cos 2t, - 2\sin 2t} \right)}}{{\sqrt {\left( {0,2\cos 2t, - 2\sin 2t} \right)\cdot\left( {0,2\cos 2t, - 2\sin 2t} \right)} }}$ ${\bf{T}}\left( t \right) = \frac{{\left( {0,2\cos 2t, - 2\sin 2t} \right)}}{{\sqrt {4{{\cos }^2}2t + 4{{\sin }^2}2t} }} = \left( {0,\cos 2t, - \sin 2t} \right)$ So, ${\bf{T}}'\left( t \right) = \left( {0, - 2\sin 2t, - 2\cos 2t} \right)$ By Eq. (6), the normal vector ${\bf{N}}\left( t \right)$ is given by ${\bf{N}}\left( t \right) = \frac{{{\bf{T}}'\left( t \right)}}{{||{\bf{T}}'\left( t \right)||}}$ ${\bf{N}}\left( t \right) = \frac{{\left( {0, - 2\sin 2t, - 2\cos 2t} \right)}}{{\sqrt {\left( {0, - 2\sin 2t, - 2\cos 2t} \right)\cdot\left( {0, - 2\sin 2t, - 2\cos 2t} \right)} }}$ ${\bf{N}}\left( t \right) = \frac{{\left( {0, - 2\sin 2t, - 2\cos 2t} \right)}}{{\sqrt {4{{\sin }^2}2t + 4{{\cos }^2}2t} }} = \left( {0, - \sin 2t, - \cos 2t} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.