Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 735: 23

Answer

The value(s) of $\alpha$ such that the curvature of $y = {{\rm{e}}^{\alpha x}}$ at $x=0$ is as large as possible are $\alpha = \pm \sqrt 2 $.

Work Step by Step

We have $y = {{\rm{e}}^{\alpha x}}$. Write $y = f\left( x \right) = {{\rm{e}}^{\alpha x}}$. So, $f'\left( x \right) = \alpha {{\rm{e}}^{\alpha x}}$ and $f{\rm{''}}\left( x \right) = {\alpha ^2}{{\rm{e}}^{\alpha x}}$. By Eq. (5) of Theorem 2, the curvature is given by $\kappa \left( x \right) = \frac{{\left| {f{\rm{''}}\left( x \right)} \right|}}{{{{\left( {1 + f'{{\left( x \right)}^2}} \right)}^{3/2}}}}$ $\kappa \left( x \right) = \frac{{\left| {{\alpha ^2}{{\rm{e}}^{\alpha x}}} \right|}}{{{{\left( {1 + {\alpha ^2}{{\rm{e}}^{2\alpha x}}} \right)}^{3/2}}}}$ At $x=0$, we have $\kappa \left( 0 \right) = \frac{{{\alpha ^2}}}{{{{\left( {1 + {\alpha ^2}} \right)}^{3/2}}}}$ Next, we find the values of $\alpha$ that make $\kappa \left( 0 \right)$ maximum. We write $g\left( \alpha \right) = \kappa \left( 0 \right) = \frac{{{\alpha ^2}}}{{{{\left( {1 + {\alpha ^2}} \right)}^{3/2}}}}$. The derivatives are $g'\left( \alpha \right) = \frac{{\alpha \left( {2 - {\alpha ^2}} \right)}}{{{{\left( {1 + {\alpha ^2}} \right)}^{5/2}}}}$, ${\ \ }$ $g{\rm{''}}\left( \alpha \right) = \frac{{2{\alpha ^4} - 11{\alpha ^2} + 2}}{{{{\left( {1 + {\alpha ^2}} \right)}^{7/2}}}}$ We solve the equation $g'\left( \alpha \right) = 0$ to find the critical points. So, $\frac{{\alpha \left( {2 - {\alpha ^2}} \right)}}{{{{\left( {1 + {\alpha ^2}} \right)}^{5/2}}}} = 0$ The denominator is nonvanishing, so $\alpha \left( {2 - {\alpha ^2}} \right) = 0$ The solutions are $\alpha=0$ and $\alpha = \pm \sqrt 2 $. Substituting $\alpha=0$ in $g{\rm{''}}\left( \alpha \right)$ gives $g{\rm{''}}\left( 0 \right) = 2$. Since $g{\rm{''}}\left( 0 \right) > 0$, the curvature is minimum at $\alpha=0$. Substituting $\alpha = \sqrt 2 $ in $g{\rm{''}}\left( \alpha \right)$ gives $g{\rm{''}}\left( {\sqrt 2 } \right) = - \frac{4}{{9\sqrt 3 }}$. Since $g{\rm{''}}\left( 0 \right) < 0$, the curvature is maximum at $\alpha = \sqrt 2 $. Substituting $\alpha = - \sqrt 2 $ in $g{\rm{''}}\left( \alpha \right)$ gives $g{\rm{''}}\left( { - \sqrt 2 } \right) = - \frac{4}{{9\sqrt 3 }}$. Since $g{\rm{''}}\left( 0 \right) < 0$, the curvature is maximum at $\alpha = - \sqrt 2 $. Hence, the value(s) of $\alpha$ such that the curvature of $y = {{\rm{e}}^{\alpha x}}$ at $x=0$ is as large as possible are $\alpha = \pm \sqrt 2 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.