Answer
The normal vector ${\bf{N}}\left( \theta \right)$ of radius $R$ is ${\bf{N}}\left( \theta \right) = - \left( {\cos \theta ,\sin \theta } \right)$.
Since the normal vector has negative sign, it points inside the circle. Please see the figure attached.
Work Step by Step
We have ${\bf{r}}\left( \theta \right) = R\left( {\cos \theta ,\sin \theta } \right)$.
The tangent vector is ${\bf{r}}'\left( \theta \right) = R\left( { - \sin \theta ,\cos \theta } \right)$, where prime denotes differentiation with respect to $\theta$. We find the unit tangent vector ${\bf{T}}\left( \theta \right)$:
${\bf{T}}\left( \theta \right) = \frac{{{\bf{r}}'\left( \theta \right)}}{{||{\bf{r}}'\left( \theta \right)||}} = \frac{{R\left( { - \sin \theta ,\cos \theta } \right)}}{{\sqrt {{R^2}\left( { - \sin \theta ,\cos \theta } \right)\cdot\left( { - \sin \theta ,\cos \theta } \right)} }}$
${\bf{T}}\left( \theta \right) = \frac{{\left( { - \sin \theta ,\cos \theta } \right)}}{{\sqrt {{{\sin }^2}\theta + {{\cos }^2}\theta } }} = \left( { - \sin \theta ,\cos \theta } \right)$
So, ${\bf{T}}'\left( \theta \right) = \left( { - \cos \theta , - \sin \theta } \right)$.
By Eq. (6), the normal vector ${\bf{N}}\left( \theta \right)$ is given by
${\bf{N}}\left( \theta \right) = \frac{{{\bf{T}}'\left( \theta \right)}}{{||{\bf{T}}'\left( \theta \right)||}}$
${\bf{N}}\left( \theta \right) = \frac{{\left( { - \cos \theta , - \sin \theta } \right)}}{{\sqrt {\left( { - \cos \theta , - \sin \theta } \right)\cdot\left( { - \cos \theta , - \sin \theta } \right)} }}$
${\bf{N}}\left( \theta \right) = \frac{{\left( { - \cos \theta , - \sin \theta } \right)}}{{\sqrt {{{\cos }^2}\theta + {{\sin }^2}\theta } }} = - \left( {\cos \theta ,\sin \theta } \right)$
Since the normal vector has negative sign, it points inside the circle.
At $\theta = \frac{\pi }{4}$, the normal vector is ${\bf{N}}\left( {\frac{\pi }{4}} \right) = - \left( {\frac{1}{2}\sqrt 2 ,\frac{1}{2}\sqrt 2 } \right)$.
For $R=4$, we have ${\bf{r}}\left( {\frac{\pi }{4}} \right) = \left( {2\sqrt 2 ,2\sqrt 2 } \right)$.