Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 735: 39

Answer

The normal vector at $t = \frac{\pi }{4}$ is ${\bf{N}}\left( {\frac{\pi }{4}} \right) = - \sqrt {\frac{2}{3}} \left( {\frac{1}{2}\sqrt 2 ,1} \right)$ The normal vector at $t = \frac{{3\pi }}{4}$ is ${\bf{N}}\left( {\frac{{3\pi }}{4}} \right) = \sqrt {\frac{2}{3}} \left( {\frac{1}{2}\sqrt 2 ,1} \right)$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {t,\cos t} \right)$. The tangent vector is ${\bf{r}}'\left( t \right) = \left( {1, - \sin t} \right)$. We find the unit tangent vector ${\bf{T}}\left( t \right)$: ${\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{||{\bf{r}}'\left( t \right)||}} = \frac{{\left( {1, - \sin t} \right)}}{{\sqrt {\left( {1, - \sin t} \right)\cdot\left( {1, - \sin t} \right)} }}$ ${\bf{T}}\left( t \right) = \frac{{\left( {1, - \sin t} \right)}}{{\sqrt {1 + {{\sin }^2}t} }} = \left( {\frac{1}{{\sqrt {1 + {{\sin }^2}t} }},\frac{{ - \sin t}}{{\sqrt {1 + {{\sin }^2}t} }}} \right)$ To evaluate the derivative of ${\bf{T}}\left( t \right)$: 1. Evaluate the derivative of $\frac{1}{{\sqrt {1 + {{\sin }^2}t} }}$ $\frac{d}{{dt}}\left( {{{\left( {1 + {{\sin }^2}t} \right)}^{ - 1/2}}} \right) = - \frac{{2\sin t\cos t}}{2}{\left( {1 + {{\sin }^2}t} \right)^{ - 3/2}}$ $\frac{d}{{dt}}\left( {{{\left( {1 + {{\sin }^2}t} \right)}^{ - 1/2}}} \right) = - \frac{{\cos t\sin t}}{{{{\left( {1 + {{\sin }^2}t} \right)}^{3/2}}}}$ 2. Evaluate the derivative of $\frac{{ - \sin t}}{{\sqrt {1 + {{\sin }^2}t} }}$ $\frac{d}{{dt}}\left( {\frac{{ - \sin t}}{{\sqrt {1 + {{\sin }^2}t} }}} \right) = \frac{{\sqrt {1 + {{\sin }^2}t} \left( { - \cos t} \right) - \left( { - \sin t} \right)\left( {\frac{{2\sin t\cos t}}{{2\sqrt {1 + {{\sin }^2}t} }}} \right)}}{{1 + {{\sin }^2}t}}$ $ = \frac{{\left( {1 + {{\sin }^2}} \right)\left( { - \cos t} \right) + {{\sin }^2}t\cos t}}{{{{\left( {1 + {{\sin }^2}t} \right)}^{3/2}}}}$ $\frac{d}{{dt}}\left( {\frac{{ - \sin t}}{{\sqrt {1 + {{\sin }^2}t} }}} \right) = - \frac{{\cos t}}{{{{\left( {1 + {{\sin }^2}t} \right)}^{3/2}}}}$ Thus, the derivative of the tangent vector is ${\bf{T}}'\left( t \right) = \left( { - \frac{{\cos t\sin t}}{{{{\left( {1 + {{\sin }^2}t} \right)}^{3/2}}}}, - \frac{{\cos t}}{{{{\left( {1 + {{\sin }^2}t} \right)}^{3/2}}}}} \right)$ ${\bf{T}}'\left( t \right) = - \frac{{\cos t}}{{{{\left( {1 + {{\sin }^2}t} \right)}^{3/2}}}}\left( {\sin t,1} \right)$ 3. Evaluate $||{\bf{T}}'\left( t \right)||$ $||{\bf{T}}'\left( t \right)|{|^2} = \frac{{{{\cos }^2}t}}{{{{\left( {1 + {{\sin }^2}t} \right)}^3}}}\left( {\sin t,1} \right)\cdot\left( {\sin t,1} \right)$ $||{\bf{T}}'\left( t \right)|{|^2} = \frac{{{{\cos }^2}t}}{{{{\left( {1 + {{\sin }^2}t} \right)}^3}}}\left( {{{\sin }^2}t + 1} \right)$ $||{\bf{T}}'\left( t \right)|{|^2} = \frac{{{{\cos }^2}t}}{{{{\left( {1 + {{\sin }^2}t} \right)}^2}}}$ So, $||{\bf{T}}'\left( t \right)|| = \pm \frac{{\cos t}}{{1 + {{\sin }^2}t}}$ By Eq. (6), the normal vector ${\bf{N}}\left( t \right)$ is given by ${\bf{N}}\left( t \right) = \frac{{{\bf{T}}'\left( t \right)}}{{||{\bf{T}}'\left( t \right)||}}$ Substituting ${\bf{T}}'\left( t \right)$ and $||{\bf{T}}'\left( t \right)||$ in ${\bf{N}}\left( t \right)$ gives ${\bf{N}}\left( t \right) = \mp \frac{{\cos t}}{{{{\left( {1 + {{\sin }^2}t} \right)}^{3/2}}}}\left( {\sin t,1} \right)\left( {\frac{{1 + {{\sin }^2}t}}{{\cos t}}} \right)$ ${\bf{N}}\left( t \right) = \mp \frac{1}{{\sqrt {1 + {{\sin }^2}t} }}\left( {\sin t,1} \right)$ At $t = \frac{\pi }{4}$, we get ${\bf{N}}\left( {\frac{\pi }{4}} \right) = \mp \frac{1}{{\sqrt {1 + {{\left( {\frac{1}{2}\sqrt 2 } \right)}^2}} }}\left( {\frac{1}{2}\sqrt 2 ,1} \right) = \mp \sqrt {\frac{2}{3}} \left( {\frac{1}{2}\sqrt 2 ,1} \right)$ At $t = \frac{\pi }{4}$, for the normal vector to point inside the curve, the correct choice is ${\bf{N}}\left( {\frac{\pi }{4}} \right) = - \sqrt {\frac{2}{3}} \left( {\frac{1}{2}\sqrt 2 ,1} \right)$ At $t = \frac{{3\pi }}{4}$, we get ${\bf{N}}\left( {\frac{{3\pi }}{4}} \right) = \mp \frac{1}{{\sqrt {1 + {{\left( {\frac{1}{2}\sqrt 2 } \right)}^2}} }}\left( {\frac{1}{2}\sqrt 2 ,1} \right) = \mp \sqrt {\frac{2}{3}} \left( {\frac{1}{2}\sqrt 2 ,1} \right)$ At $t = \frac{{3\pi }}{4}$, for the normal vector to point inside the curve, the correct choice is ${\bf{N}}\left( {\frac{{3\pi }}{4}} \right) = \sqrt {\frac{2}{3}} \left( {\frac{1}{2}\sqrt 2 ,1} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.