Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 735: 45

Answer

The normal vector at $t = {\pi ^{1/3}}$ is ${\bf{N}}\left( {{\pi ^{1/3}}} \right) = \left( {\frac{1}{2}, - \frac{1}{2}\sqrt 3 } \right)$

Work Step by Step

We have the parametrization of the clothoid ${\bf{r}}\left( t \right) = \left( {x\left( t \right),y\left( t \right)} \right)$, where $x\left( t \right) = \mathop \smallint \limits_0^t \sin \frac{{{u^3}}}{3}{\rm{d}}u$, ${\ \ }$ $y\left( t \right) = \mathop \smallint \limits_0^t \cos \frac{{{u^3}}}{3}{\rm{d}}u$ By the Fundamental Theorem of Calculus: $x'\left( t \right) = \sin \frac{{{t^3}}}{3}$, ${\ \ }$ $y'\left( t \right) = \cos \frac{{{t^3}}}{3}$ So, the tangent vector is ${\bf{r}}'\left( t \right) = \left( {x'\left( t \right),y'\left( t \right)} \right) = \left( {\sin \frac{{{t^3}}}{3},\cos \frac{{{t^3}}}{3}} \right)$ The unit tangent vector is ${\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{||{\bf{r}}'\left( t \right)||}} = \frac{{\left( {\sin \frac{{{t^3}}}{3},\cos \frac{{{t^3}}}{3}} \right)}}{{\sqrt {\left( {\sin \frac{{{t^3}}}{3},\cos \frac{{{t^3}}}{3}} \right)\cdot\left( {\sin \frac{{{t^3}}}{3},\cos \frac{{{t^3}}}{3}} \right)} }}$ ${\bf{T}}\left( t \right) = \frac{{\left( {\sin \frac{{{t^3}}}{3},\cos \frac{{{t^3}}}{3}} \right)}}{{\sqrt {{{\sin }^2}\frac{{{t^3}}}{3} + {{\cos }^2}\frac{{{t^3}}}{3}} }}$ Since ${\sin ^2}\frac{{{t^3}}}{3} + {\cos ^2}\frac{{{t^3}}}{3} = 1$, we get ${\bf{T}}\left( t \right) = \left( {\sin \frac{{{t^3}}}{3},\cos \frac{{{t^3}}}{3}} \right)$. We evaluate the derivative of ${\bf{T}}\left( t \right)$: ${\bf{T}}'\left( t \right) = \left( {{t^2}\cos \frac{{{t^3}}}{3}, - {t^2}\sin \frac{{{t^3}}}{3}} \right)$ At $t = {\pi ^{1/3}}$, we get ${\bf{T}}'\left( {{\pi ^{1/3}}} \right) = \left( {\frac{1}{2}{\pi ^{2/3}}, - \frac{1}{2}\sqrt 3 {\pi ^{2/3}}} \right)$ The normal vector at $t = {\pi ^{1/3}}$: ${\bf{N}}\left( {{\pi ^{1/3}}} \right) = \frac{{{\bf{T}}'\left( {{\pi ^{1/3}}} \right)}}{{||{\bf{T}}'\left( {{\pi ^{1/3}}} \right)||}}$ ${\bf{N}}\left( {{\pi ^{1/3}}} \right) = \frac{{\left( {\frac{1}{2}{\pi ^{2/3}}, - \frac{1}{2}\sqrt 3 {\pi ^{2/3}}} \right)}}{{\sqrt {\left( {\frac{1}{2}{\pi ^{2/3}}, - \frac{1}{2}\sqrt 3 {\pi ^{2/3}}} \right)\cdot\left( {\frac{1}{2}{\pi ^{2/3}}, - \frac{1}{2}\sqrt 3 {\pi ^{2/3}}} \right)} }}$ ${\bf{N}}\left( {{\pi ^{1/3}}} \right) = \frac{{\left( {\frac{1}{2}{\pi ^{2/3}}, - \frac{1}{2}\sqrt 3 {\pi ^{2/3}}} \right)}}{{\sqrt {\frac{1}{4}{\pi ^{4/3}} + \frac{3}{4}{\pi ^{4/3}}} }} = \frac{1}{{{\pi ^{2/3}}}}\left( {\frac{1}{2}{\pi ^{2/3}}, - \frac{1}{2}\sqrt 3 {\pi ^{2/3}}} \right)$ ${\bf{N}}\left( {{\pi ^{1/3}}} \right) = \left( {\frac{1}{2}, - \frac{1}{2}\sqrt 3 } \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.