Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 735: 40

Answer

The normal vector at $t = \sqrt \pi $ is ${\bf{N}}\left( {\sqrt \pi } \right) = \left( {0, - 1} \right)$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {x\left( t \right),y\left( t \right)} \right)$, where $x\left( t \right) = \mathop \smallint \limits_0^t \sin \frac{{{u^2}}}{2}{\rm{d}}u$, ${\ \ \ }$ $y\left( t \right) = \mathop \smallint \limits_0^t \cos \frac{{{u^2}}}{2}{\rm{d}}u$ By the Fundamental Theorem of Calculus: $x'\left( t \right) = \sin \frac{{{t^2}}}{2}$, ${\ \ \ }$ $y'\left( t \right) = \cos \frac{{{t^2}}}{2}$ Thus, the tangent vector is ${\bf{r}}'\left( t \right) = \left( {x'\left( t \right),y'\left( t \right)} \right) = \left( {\sin \frac{{{t^2}}}{2},\cos \frac{{{t^2}}}{2}} \right)$ We find the unit tangent vector ${\bf{T}}\left( t \right)$: ${\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{||{\bf{r}}'\left( t \right)||}} = \frac{{\left( {\sin \frac{{{t^2}}}{2},\cos \frac{{{t^2}}}{2}} \right)}}{{\sqrt {\left( {\sin \frac{{{t^2}}}{2},\cos \frac{{{t^2}}}{2}} \right)\cdot\left( {\sin \frac{{{t^2}}}{2},\cos \frac{{{t^2}}}{2}} \right)} }}$ ${\bf{T}}\left( t \right) = \frac{{\left( {\sin \frac{{{t^2}}}{2},\cos \frac{{{t^2}}}{2}} \right)}}{{\sqrt {{{\sin }^2}\frac{{{t^2}}}{2} + {{\cos }^2}\frac{{{t^2}}}{2}} }}$ Since ${\sin ^2}\frac{{{t^2}}}{2} + {\cos ^2}\frac{{{t^2}}}{2} = 1$, so ${\bf{T}}\left( t \right) = \left( {\sin \frac{{{t^2}}}{2},\cos \frac{{{t^2}}}{2}} \right)$. Taking the derivative, we obtain ${\bf{T}}'\left( t \right) = \left( {t\cos \frac{{{t^2}}}{2}, - t\sin \frac{{{t^2}}}{2}} \right) = t\left( {\cos \frac{{{t^2}}}{2}, - \sin \frac{{{t^2}}}{2}} \right)$ So, $||{\bf{T}}'\left( t \right)|| = \sqrt {{t^2}\left( {\cos \frac{{{t^2}}}{2}, - \sin \frac{{{t^2}}}{2}} \right)\cdot\left( {\cos \frac{{{t^2}}}{2}, - \sin \frac{{{t^2}}}{2}} \right)} $ $||{\bf{T}}'\left( t \right)|| = t\sqrt {{{\cos }^2}\frac{{{t^2}}}{2} + {{\sin }^2}\frac{{{t^2}}}{2}} = t$ By Eq. (6), the normal vector ${\bf{N}}\left( t \right)$ is given by ${\bf{N}}\left( t \right) = \frac{{{\bf{T}}'\left( t \right)}}{{||{\bf{T}}'\left( t \right)||}}$ ${\bf{N}}\left( t \right) = \frac{{t\left( {\cos \frac{{{t^2}}}{2}, - \sin \frac{{{t^2}}}{2}} \right)}}{t} = \left( {\cos \frac{{{t^2}}}{2}, - \sin \frac{{{t^2}}}{2}} \right)$ At $t = \sqrt \pi $, we get ${\bf{N}}\left( {\sqrt \pi } \right) = \left( {0, - 1} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.