Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.1 Exercises - Page 325: 55

Answer

$\displaystyle \frac{1}{x\ln x}$

Work Step by Step

By theorem 5.3/2:$\ \ \ \displaystyle \frac{d}{dx}[\ln u]=\frac{1}{u}\cdot\frac{du}{dx}=\frac{u^{\prime}}{u},\ \ \ (u>0)$ --------------- Here,$ u(x)=\ln x^{2}=2\ln x$ (property of ln(x), Th.5.2.3) $u^{\prime}(x)=2\displaystyle \cdot\frac{1}{x}=\frac{2}{x}$ So, $\ \ \ \displaystyle \frac{d}{dx}[\ln$($\ln x^{2}$)]$=\displaystyle \frac{1}{\ln x^{2}}\cdot\frac{2}{x}=\frac{2}{2x\ln x}=\frac{1}{x\ln x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.