Answer
$f(x)=g(x)$, for $\mathrm{x}>0$
Work Step by Step
a. For graph, please see image attached.
b.
For algebraic verification, we use Th.5.2.
Property $1$ : $\ln(1)=0$
Property $2$ : $\ln(ab)=\ln a + \ln b$
Property $3$ : $\ln(a^{n})=n\cdot\ln a $
Property 4 : $\displaystyle \ln(\frac{a}{b})=\ln a - \ln b$
--------------
$f(x)=\displaystyle \ln\frac{x^{2}}{4}$= ... property $4$...
$=\ln x^{2}-\ln 4$= ... property $3$...
$=2\ln x-\ln 4 =g(x)$