Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.1 Exercises - Page 325: 50

Answer

$\displaystyle \frac{7t^{2}+3}{t(t^{2}+3)}$

Work Step by Step

By theorem 5.3/2: $\displaystyle \frac{d}{dx}[\ln u]=\frac{1}{u}\cdot\frac{du}{dx}=\frac{u^{\prime}}{u},\ \ \ (u>0)$ --------------- Here,$ u(t)=t(t^{2}+3)^{3}$ $\displaystyle \frac{du}{dt}$=...product rule...$=1\displaystyle \cdot(t^{2}+3)^{3}+t\cdot\frac{d}{dt}[(t^{2}+3)^{3}]$ $\displaystyle \frac{d}{dt}[(t^{2}+3)^{3}]$=...chain rule...=$ 3(t^{2}+3)^{2}\cdot 2t=6t(t^{2}+3)^{2}$ so, $\displaystyle \frac{du}{dt}=(t^{2}+3)^{3}+t\cdot 6t(t^{2}+3)^{2}=(t^{2}+3)^{2}(t^{2}+3+6t^{2})=(t^{2}+3)^{2}(7t^{2}+3)$ So,$\ \ \ \displaystyle \frac{d}{dt}[\ln t(t^{2}+3)^{3}]=\frac{1}{t(t^{2}+3)^{3}}\cdot(t^{2}+3)^{2}(7t^{2}+3)=\frac{7t^{2}+3}{t(t^{2}+3)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.