Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.1 Exercises - Page 325: 48

Answer

$\displaystyle \frac{x}{x^{2}-4}$

Work Step by Step

By theorem 5.3/2: $\displaystyle \frac{d}{dx}[\ln u]=\frac{1}{u}\cdot\frac{du}{dx}=\frac{u^{\prime}}{u},\ \ \ (u>0)$ Here, $u(x)=\sqrt{x^{2}-4}= (x^{2}-4)^{1/2}$ $\displaystyle \frac{du}{dx}$=...chain rule...=$\displaystyle \frac{1}{2}(x^{2}-4)^{-1/2}\cdot 2x=\frac{x}{\sqrt{x^{2}-4}}$ So, $\displaystyle \frac{d}{dx}[\ln(\sqrt{x^{2}-4})]=\frac{1}{\sqrt{x^{2}-4}}\cdot\frac{x}{\sqrt{x^{2}-4}}=\frac{x}{x^{2}-4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.