Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.1 Exercises - Page 325: 32

Answer

$\displaystyle \ln\frac{x^{2}}{(x^{2}-1)^{2}}$

Work Step by Step

See Th.5.2. Property $1$ : $\ln(1)=0$ Property $2$ : $\ln(ab)=\ln a + \ln b$ Property $3$ : $\ln(a^{n})=n\cdot\ln a $ Property 4 : $\displaystyle \ln(\frac{a}{b})=\ln a - \ln b$ -------------- $2[\ln x-\ln(x+1)-\ln(x-1)]$ $=2[\ln x-(\ln(x+1)+\ln(x-1))]$= ... property $2$... $=2\{\ln x-\ln[(x+1)(x-1)]\}$= ... property $4$... $=2\displaystyle \ln(\frac{x}{(x+1)(x-1)})$= ... property $3$... $=\displaystyle \ln(\frac{x}{(x+1)(x-1)})^{2}$ $=\displaystyle \ln\frac{x^{2}}{(x+1)^{2}(x-1)^{2}}$ or (recognize a difference of squares)... $=\displaystyle \ln\frac{x^{2}}{(x^{2}-1)^{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.