Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.1 Exercises - Page 325: 34

Answer

$\displaystyle \ln\left(\frac{x^{2}+1}{x^{2}-1}\right)^{3/2}$

Work Step by Step

See Th.5.2. Property $1$ : $\ln(1)=0$ Property $2$ : $\ln(ab)=\ln a + \ln b$ Property $3$ : $\ln(a^{n})=n\cdot\ln a $ Property 4 : $\displaystyle \ln(\frac{a}{b})=\ln a - \ln b$ -------------- $\displaystyle \frac{3}{2}[\ln(x^{2}+1)-\ln(x+1)-\ln(x-1)]$ $=\displaystyle \frac{3}{2}\{\ln(x^{2}+1)-[\ln(x+1)+\ln(x-1)]\}$= ... property $2$... $=\displaystyle \frac{3}{2}\{\ln(x^{2}+1)-\ln[(x+1)(x-1)]\}$= ... property $4$... (also, recognize a difference of squares...) $=\displaystyle \frac{3}{2}\cdot\ln\frac{x^{2}+1}{x^{2}-1}$= ... property $3$... $\displaystyle \ln\left(\frac{x^{2}+1}{x^{2}-1}\right)^{3/2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.