Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.1 Exercises - Page 325: 31

Answer

$\displaystyle \ln\sqrt[3]{\frac{x(x+3)^{2}}{(x^{2}-1)}}$

Work Step by Step

See Th.5.2. Property $1$ : $\ln(1)=0$ Property $2$ : $\ln(ab)=\ln a + \ln b$ Property $3$ : $\ln(a^{n})=n\cdot\ln a $ Property 4 : $\displaystyle \ln(\frac{a}{b})=\ln a - \ln b$ -------------- $\displaystyle \frac{1}{3}[2\ln(x+3)+\ln x-\ln(x^{2}-1)]$= ... property $3$... $=\displaystyle \frac{1}{3}[\ln(x+3)^{2}+\ln x-\ln(x^{2}-1)]$= ... property $2$... $=\displaystyle \frac{1}{3}[\ln[(x+3)^{2}\cdot x]-\ln(x^{2}-1)]$= ... property $4$... $=\displaystyle \frac{1}{3}\cdot\ln\left[\frac{x(x+3)^{2}}{(x^{2}-1)}\right]$= ... property $3$... $=\displaystyle \ln\left[\frac{x(x+3)^{2}}{(x^{2}-1)}\right]^{1/3}$ $=\displaystyle \ln\sqrt[3]{\frac{x(x+3)^{2}}{(x^{2}-1)}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.