Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.1 Exercises - Page 325: 30

Answer

$\displaystyle \ln\frac{x^{3}y^{2}}{z^{4}}$

Work Step by Step

See Th.5.2. Property $1$ : $\ln(1)=0$ Property $2$ : $\ln(ab)=\ln a + \ln b$ Property $3$ : $\ln(a^{n})=n\cdot\ln a $ Property 4 : $\displaystyle \ln(\frac{a}{b})=\ln a - \ln b$ -------------- $3\ln x+2\ln y-4\ln z$= ... property $3$... $\ln x^{3}+\ln y^{2}-\ln z^{4}$= ... property $2$... $\ln(x^{3}y^{2})-\ln z^{4}$= ... property $4$... $=\displaystyle \ln\frac{x^{3}y^{2}}{z^{4}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.