Answer
1. Integrate: $= \frac{1}{3}t^{3} - sin(t) + C$
2. Differentiate:
$=t^{2} - cos(t)$
Work Step by Step
1. Integrate
$\int (t^{2}-cos(t))dt$
$= \frac{t^{3}}{3} - (sin(t)) + C$
$= \frac{1}{3}t^{3} - sin(t) + C$
2. Differentiate
$f(x) = \frac{1}{3}t^{3} - sin(t) + C$
$f'(x) = t^{2} - (cos(t))$
$f'(x) = t^{2} - cos(t)$