Answer
$ 2x^{4} - 3x^{3} + 4x + C $
Work Step by Step
$\int (8x^{3}-9x^{2}+4) dx $
$=\int 8x^{3} dx - \int 9x^{2} dx + \int 4 dx $
$=\frac{8x^{3+1}}{3+1} - \frac{9x^{2+1}}{2+1} + C'+ \int 4x^{0} dx $
= $\frac{8x^{4}}{4} - \frac{9x^{3}}{3} + \frac{4x^{1}}{1} + C $
= $\frac{8}{4}x^{4} - \frac{9}{3}x^{3}+ 4x + C $
= $ 2x^{4} - 3x^{3} + 4x + C $
The result can be checked by differentiating, and it works.