Answer
$\frac{1}{6}x^{6} + x + C $
Work Step by Step
$\int (x^{5}+1) dx $
= $\int x^{5} dx + \int 1 dx $
= $\frac{x^{5+1}}{5+1} + C'+ \int 1x^{0} dx $
= $\frac{x^{6}}{6} + \frac{1x^{1}}{1} + C $
= $\frac{1}{6}x^{6} + x + C $
The result can be checked by differentiating, and it works.