Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.2 - The Product and Quotient Rules - 3.2 Exercises - Page 189: 8

Answer

$g'\left( x \right) = \left( {x + 2\sqrt x + 1 + \frac{1}{{\sqrt x }}} \right){e^x}$

Work Step by Step

$$\eqalign{ & g\left( x \right) = \left( {x + 2\sqrt x } \right){e^x} \cr & {\text{Differentiating}} \cr & g'\left( x \right) = \frac{d}{{dx}}\left[ {\left( {x + 2\sqrt x } \right){e^x}} \right] \cr & {\text{Differentiate by using the formula }}\left( {fh} \right)' = fh' + hf' \cr & {\text{Let }}f = x + 2\sqrt x {\text{ and }}h = {e^x},{\text{ then}} \cr & g'\left( x \right) = \left( {x + 2\sqrt x } \right)\left( {{e^x}} \right)' + {e^x}\left( {x + 2\sqrt x } \right)' \cr & {\text{Compute derivatives}} \cr & g'\left( x \right) = \left( {x + 2\sqrt x } \right)\left( {{e^x}} \right) + {e^x}\left( {1 + 2\left( {\frac{1}{{2\sqrt x }}} \right)} \right) \cr & {\text{Multiply}} \cr & g'\left( x \right) = \left( {x + 2\sqrt x } \right)\left( {{e^x}} \right) + {e^x}\left( {1 + \frac{1}{{\sqrt x }}} \right) \cr & {\text{Factoring}} \cr & g'\left( x \right) = \left( {x + 2\sqrt x + 1 + \frac{1}{{\sqrt x }}} \right){e^x} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.