Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.2 - The Product and Quotient Rules - 3.2 Exercises - Page 189: 10

Answer

$\frac{{dy}}{{dx}} = \frac{{{e^x}}}{{{{\left( {1 - {e^x}} \right)}^2}}}$

Work Step by Step

$$\eqalign{ & y = \frac{{{e^x}}}{{1 - {e^x}}} \cr & {\text{Differentiating}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\frac{{{e^x}}}{{1 - {e^x}}}} \right] \cr & {\text{Differentiate by using the formula }}\left( {\frac{f}{g}} \right)' = \frac{{gf' - fg'}}{{{g^2}}} \cr & {\text{Let }}f = {e^x}{\text{ and }}g = 1 - {e^x},{\text{ then}} \cr & \frac{{dy}}{{dx}} = \frac{{\left( {1 - {e^x}} \right)\left( {{e^x}} \right)' - {e^x}\left( {1 - {e^x}} \right)'}}{{{{\left( {1 - {e^x}} \right)}^2}}} \cr & {\text{Compute the derivatives}} \cr & \frac{{dy}}{{dx}} = \frac{{\left( {1 - {e^x}} \right){e^x} - {e^x}\left( { - {e^x}} \right)}}{{{{\left( {1 - {e^x}} \right)}^2}}} \cr & {\text{Multiply and simplify}} \cr & \frac{{dy}}{{dx}} = \frac{{{e^x} - {e^{2x}} + {e^{2x}}}}{{{{\left( {1 - {e^x}} \right)}^2}}} \cr & \frac{{dy}}{{dx}} = \frac{{{e^x}}}{{{{\left( {1 - {e^x}} \right)}^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.