Answer
Tangent line:$y = 2x $
Normal line: $y = - \frac{1}{2}x $
Work Step by Step
$$\eqalign{
& y = x + x{e^x}{\text{ at the point }}\left( {0,0} \right) \cr
& {\text{Differentiate }}y{\text{ to calculate the slope at the point }}\left( {0,0} \right) \cr
& \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {x + x{e^x}} \right] \cr
& \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ x \right] + \underbrace {\frac{d}{{dx}}\left[ {x{e^x}} \right]}_{{\text{product rule}}} \cr
& \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ x \right] + x\frac{d}{{dx}}\left[ {{e^x}} \right]{\text{ + }}{e^x}\frac{d}{{dx}}\left[ x \right] \cr
& \frac{{dy}}{{dx}} = 1 + x{e^x}{\text{ + }}{e^x}\left( 1 \right) \cr
& \frac{{dy}}{{dx}} = 1 + x{e^x}{\text{ + }}{e^x} \cr
& \cr
& {\text{Find }}m{\text{ at }}\left( {0,0} \right) \cr
& m = {\left. {\frac{{dy}}{{dx}}} \right|_{x = 0}} = 1 + \left( 0 \right){e^0}{\text{ + }}{e^0} \cr
& m = 2 \cr
& \cr
& {\text{Use the Point}} - {\text{Slope Form of the Equation of a Line}} \cr
& y - {y_1} = m\left( {x - {x_1}} \right) \cr
& \underbrace {\left( {0,0} \right)}_{\left( {{x_1},{y_1}} \right)} \to x = 0{\text{ and }}{y_1} = 0 \cr
& {\text{Therefore}} \cr
& y - 0 = 2\left( {x - 0} \right) \cr
& {\text{Simplify}} \cr
& y = 2x \cr
& \cr
& {\text{The equation of the normal line is given by}} \cr
& y - {y_1} = - \frac{1}{m}\left( {x - {x_1}} \right) \cr
& y - 0 = - \frac{1}{2}\left( {x - 0} \right) \cr
& y = - \frac{1}{2}x \cr
& \cr
& {\text{Summary}} \cr
& {\text{equation of the tangent line: }}y = 2x \cr
& {\text{equation of the normal line: }}y = - \frac{1}{2}x \cr} $$