Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.2 - The Product and Quotient Rules - 3.2 Exercises - Page 189: 21

Answer

$V'\left( t \right) = \frac{{3t + 2{e^t} + 4t{e^t}}}{{2\sqrt t }}$

Work Step by Step

$$\eqalign{ & V\left( t \right) = \left( {t + 2{e^t}} \right)\sqrt t \cr & {\text{Differentiating}} \cr & V'\left( t \right) = \frac{d}{{dt}}\left[ {\left( {t + 2{e^t}} \right)\sqrt t } \right] \cr & {\text{Differentiate by using the formula }}\left( {gh} \right)' = gh' + hg' \cr & {\text{Let }}g = t + 2{e^t}{\text{ and }}h = \sqrt t ,{\text{ then}} \cr & V'\left( t \right) = \left( {t + 2{e^t}} \right)\left( {\sqrt t } \right)' + \sqrt t \left( {t + 2{e^t}} \right)' \cr & {\text{Compute derivatives}} \cr & V'\left( t \right) = \left( {t + 2{e^t}} \right)\left( {\frac{1}{{2\sqrt t }}} \right) + \sqrt t \left( {1 + 2{e^t}} \right) \cr & {\text{Multiply and simplify}} \cr & V'\left( t \right) = \frac{t}{{2\sqrt t }} + \frac{{2{e^t}}}{{2\sqrt t }} + \sqrt t + 2\sqrt t {e^t} \cr & V'\left( t \right) = \frac{{t + 2{e^t} + 2\left( t \right) + 2\left( t \right){e^t}}}{{2\sqrt t }} \cr & V'\left( t \right) = \frac{{3t + 2{e^t} + 4t{e^t}}}{{2\sqrt t }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.