Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.2 - The Product and Quotient Rules - 3.2 Exercises - Page 189: 16

Answer

$\frac{{dy}}{{dx}} = \frac{1}{{2\sqrt x {{\left( {\sqrt x + 1} \right)}^2}}}$

Work Step by Step

$$\eqalign{ & y = \frac{{\sqrt x }}{{\sqrt x + 1}} \cr & {\text{Differentiating}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\frac{{\sqrt x }}{{\sqrt x + 1}}} \right] \cr & {\text{Differentiate by using the formula }}\left( {\frac{f}{g}} \right)' = \frac{{gf' - fg'}}{{{g^2}}} \cr & {\text{Let }}f = \sqrt x {\text{ and }}g = \sqrt x + 1,{\text{ then}} \cr & \frac{{dy}}{{dx}} = \frac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x } \right)' - \sqrt x \left( {\sqrt x + 1} \right)'}}{{{{\left( {\sqrt x + 1} \right)}^2}}} \cr & {\text{Compute derivatives}} \cr & \frac{{dy}}{{dx}} = \frac{{\left( {\sqrt x + 1} \right)\left( {\frac{1}{{2\sqrt x }}} \right) - \sqrt x \left( {\frac{1}{{2\sqrt x }}} \right)}}{{{{\left( {\sqrt x + 1} \right)}^2}}} \cr & {\text{Multiply and simplify}} \cr & \frac{{dy}}{{dx}} = \frac{{\frac{1}{2} + \frac{1}{{2\sqrt x }} - \frac{1}{2}}}{{{{\left( {\sqrt x + 1} \right)}^2}}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{2\sqrt x {{\left( {\sqrt x + 1} \right)}^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.