Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.2 - The Product and Quotient Rules - 3.2 Exercises - Page 189: 22

Answer

$W'\left( t \right) = \left( {1 + 2t{e^t} + {e^t}} \right){e^t}$

Work Step by Step

$$\eqalign{ & W\left( t \right) = {e^t}\left( {1 + t{e^t}} \right) \cr & {\text{Distribute}} \cr & W\left( t \right) = {e^t}\left( 1 \right) + {e^t}\left( {t{e^t}} \right) \cr & W\left( t \right) = {e^t} + t{e^{2t}} \cr & {\text{Differentiating}} \cr & W'\left( t \right) = \frac{d}{{dt}}\left[ {{e^t} + t{e^{2t}}} \right] \cr & {\text{Sum rule for derivatives}} \cr & W'\left( t \right) = \frac{d}{{dt}}\left[ {{e^t}} \right] + \frac{d}{{dt}}\left[ {t{e^{2t}}} \right] \cr & {\text{Differentiate }}\frac{d}{{dt}}\left[ {t{e^{2t}}} \right]\,{\text{ by using the formula }}\left( {fg} \right)' = fg' + gf' \cr & W'\left( t \right) = \frac{d}{{dt}}\left[ {{e^t}} \right] + t\frac{d}{{dt}}\left[ {{e^{2t}}} \right] + {e^{2t}}\frac{d}{{dt}}\left[ t \right] \cr & {\text{Computing derivatives}} \cr & W'\left( t \right) = {e^t} + t\left( {2{e^{2t}}} \right) + {e^{2t}}\left( 1 \right) \cr & {\text{Multiply and simplify}} \cr & W'\left( t \right) = {e^t} + 2t{e^{2t}} + {e^{2t}} \cr & {\text{Factoring}} \cr & W'\left( t \right) = \left( {1 + 2t{e^t} + {e^t}} \right){e^t} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.