Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.2 - The Product and Quotient Rules - 3.2 Exercises - Page 189: 12

Answer

$G'\left( u \right) = \frac{{18{u^4} + 24{u^3} - 5}}{{{{\left( {u + 1} \right)}^2}}}$

Work Step by Step

$$\eqalign{ & G\left( u \right) = \frac{{6{u^4} - 5u}}{{u + 1}} \cr & {\text{Differentiating}} \cr & G'\left( u \right) = \frac{d}{{du}}\left[ {\frac{{6{u^4} - 5u}}{{u + 1}}} \right] \cr & {\text{Differentiate by using the formula }}\left( {\frac{f}{h}} \right)' = \frac{{hf' - fh'}}{{{h^2}}},{\text{ }}h \ne 0 \cr & {\text{Let }}f = 6{u^4} - 5u{\text{ and }}h = u + 1,{\text{ then}} \cr & G'\left( u \right) = \frac{{\left( {u + 1} \right)\left( {6{u^4} - 5u} \right)' - \left( {6{u^4} - 5u} \right)\left( {u + 1} \right)'}}{{{{\left( {u + 1} \right)}^2}}} \cr & {\text{Compute derivatives}} \cr & G'\left( u \right) = \frac{{\left( {u + 1} \right)\left( {24{u^3} - 5} \right) - \left( {6{u^4} - 5u} \right)\left( 1 \right)}}{{{{\left( {u + 1} \right)}^2}}} \cr & {\text{Multiply and simplify}} \cr & G'\left( u \right) = \frac{{24{u^4} - 5u + 24{u^3} - 5 - 6{u^4} + 5u}}{{{{\left( {u + 1} \right)}^2}}} \cr & G'\left( u \right) = \frac{{18{u^4} + 24{u^3} - 5}}{{{{\left( {u + 1} \right)}^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.