Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.2 - The Product and Quotient Rules - 3.2 Exercises - Page 189: 20

Answer

$f'\left( z \right) = 1 + {e^z} + z - z{e^z}$

Work Step by Step

$$\eqalign{ & f\left( z \right) = \left( {1 - {e^z}} \right)\left( {z + {e^z}} \right) \cr & {\text{Differentiating}} \cr & f'\left( z \right) = \frac{d}{{dz}}\left[ {\left( {1 - {e^z}} \right)\left( {z + {e^z}} \right)} \right] \cr & {\text{Differentiate by using the formula }}\left( {gh} \right)' = gh' + hg' \cr & {\text{Let }}g = \left( {1 - {e^z}} \right){\text{ and }}h = \left( {z + {e^z}} \right),{\text{ then}} \cr & f'\left( z \right) = \left( {1 - {e^z}} \right)\left( {z + {e^z}} \right)' + \left( {z + {e^z}} \right)\left( {1 - {e^z}} \right)' \cr & {\text{Compute derivatives}} \cr & f'\left( z \right) = \left( {1 - {e^z}} \right)\left( {1 + {e^z}} \right) + \left( {z + {e^z}} \right)\left( {1 - {e^z}} \right) \cr & {\text{Multiply and simplify}} \cr & f'\left( z \right) = 1 + {e^z} - {e^z} + {e^{2z}} + z + {e^z} - z{e^z} - {e^{2z}} \cr & f'\left( z \right) = 1 + {e^z} + z - z{e^z} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.