Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.2 - The Product and Quotient Rules - 3.2 Exercises - Page 189: 7

Answer

$\frac{{dy}}{{dx}} = \left( {3{x^2} + x - 5} \right){e^x}$

Work Step by Step

$$\eqalign{ & y = \left( {3{x^2} - 5x} \right){e^x} \cr & {\text{Differentiating}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\left( {3{x^2} - 5x} \right){e^x}} \right] \cr & {\text{Differentiate by using the formula }}\left( {fg} \right)' = fg' + gf' \cr & {\text{Let }}f = 3{x^2} - 5x{\text{ and }}g = {e^x} \cr & \frac{{dy}}{{dx}} = \left( {3{x^2} - 5x} \right)\left( {{e^x}} \right)' + {e^x}\left( {3{x^2} - 5x} \right)' \cr & {\text{Compute derivatives}} \cr & \frac{{dy}}{{dx}} = \left( {3{x^2} - 5x} \right){e^x} + {e^x}\left( {6x - 5} \right) \cr & {\text{Multiply and simplify}} \cr & \frac{{dy}}{{dx}} = 3{x^2}{e^x} - 5x{e^x} + 6x{e^x} - 5{e^x} \cr & \frac{{dy}}{{dx}} = 3{x^2}{e^x} + x{e^x} - 5{e^x} \cr & or \cr & \frac{{dy}}{{dx}} = \left( {3{x^2} + x - 5} \right){e^x} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.