Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.2 - The Product and Quotient Rules - 3.2 Exercises - Page 189: 34

Answer

$f'\left( x \right) = \frac{{1 + \frac{1}{2}\sqrt x }}{{{{\left( {1 + \sqrt x } \right)}^2}}}{\text{ and }}f''\left( x \right) = \frac{{ - 3 - \sqrt x }}{{4\sqrt x {{\left( {1 + \sqrt x } \right)}^3}}}$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{x}{{1 + \sqrt x }} \cr & {\text{Find }}f'\left( x \right) \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\frac{x}{{1 + \sqrt x }}} \right] \cr & {\text{Use the quotient rule}} \cr & f'\left( x \right) = \frac{{\left( {1 + \sqrt x } \right)\frac{d}{{dx}}\left[ x \right] - x\frac{d}{{dx}}\left[ {1 + \sqrt x } \right]}}{{{{\left( {1 + \sqrt x } \right)}^2}}} \cr & {\text{Computing derivatives}} \cr & f'\left( x \right) = \frac{{\left( {1 + \sqrt x } \right)\left( 1 \right) - x\left( {\frac{1}{{2\sqrt x }}} \right)}}{{{{\left( {1 + \sqrt x } \right)}^2}}} \cr & f'\left( x \right) = \frac{{1 + \sqrt x - \frac{1}{2}\sqrt x }}{{{{\left( {1 + \sqrt x } \right)}^2}}} \cr & f'\left( x \right) = \frac{{1 + \frac{1}{2}\sqrt x }}{{{{\left( {1 + \sqrt x } \right)}^2}}} \cr & \cr & {\text{Find }}f'\left( x \right) \cr & {\text{ }}f''\left( x \right) = \frac{d}{{dx}}\left[ {f'\left( x \right)} \right] \cr & {\text{ }}f''\left( x \right) = \frac{d}{{dx}}\left[ {\frac{{1 + \frac{1}{2}\sqrt x }}{{{{\left( {1 + \sqrt x } \right)}^2}}}} \right] \cr & {\text{ }}f''\left( x \right) = \frac{d}{{dx}}\left[ {\frac{{2 + \sqrt x }}{{2{{\left( {1 + \sqrt x } \right)}^2}}}} \right] \cr & {\text{ }}f''\left( x \right) = \frac{{2{{\left( {1 + \sqrt x } \right)}^2}\frac{d}{{dx}}\left[ {2 + \sqrt x } \right] - \left( {2 + \sqrt x } \right)\frac{d}{{dx}}\left[ {2{{\left( {1 + \sqrt x } \right)}^2}} \right]}}{{{{\left[ {2{{\left( {1 + \sqrt x } \right)}^2}} \right]}^2}}} \cr & {\text{Computing derivatives use the chain rule for }}\frac{d}{{dx}}\left[ {2{{\left( {1 + \sqrt x } \right)}^2}} \right] \cr & {\text{ }}f''\left( x \right) = \frac{{2{{\left( {1 + \sqrt x } \right)}^2}\left( {\frac{1}{{2\sqrt x }}} \right) - \left( {2 + \sqrt x } \right)\left[ {4\left( {1 + \sqrt x } \right)} \right]\left( {\frac{1}{{2\sqrt x }}} \right)}}{{4{{\left( {1 + \sqrt x } \right)}^4}}} \cr & {\text{Simplifying}} \cr & {\text{ }}f''\left( x \right) = \frac{{2\left( {1 + \sqrt x } \right)\left[ {1 + \sqrt x - 2\left( {2 + \sqrt x } \right)} \right]}}{{8\sqrt x {{\left( {1 + \sqrt x } \right)}^4}}} \cr & {\text{ }}f''\left( x \right) = \frac{{1 + \sqrt x - 2\left( {2 + \sqrt x } \right)}}{{4\sqrt x {{\left( {1 + \sqrt x } \right)}^3}}} \cr & {\text{ }}f''\left( x \right) = \frac{{1 + \sqrt x - 4 - 2\sqrt x }}{{4\sqrt x {{\left( {1 + \sqrt x } \right)}^3}}} \cr & {\text{ }}f''\left( x \right) = \frac{{ - 3 - \sqrt x }}{{4\sqrt x {{\left( {1 + \sqrt x } \right)}^3}}} \cr & \cr & {\text{Summary}} \cr & f'\left( x \right) = \frac{{1 + \frac{1}{2}\sqrt x }}{{{{\left( {1 + \sqrt x } \right)}^2}}}{\text{ and }}f''\left( x \right) = \frac{{ - 3 - \sqrt x }}{{4\sqrt x {{\left( {1 + \sqrt x } \right)}^3}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.