Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.2 - The Product and Quotient Rules - 3.2 Exercises - Page 189: 31

Answer

$f'\left( x \right) = \left( {{x^2} + 2x} \right){e^x}{\text{ and }}f''\left( x \right) = \left( {{x^2} + 4x + 2} \right){e^x}$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {x^2}{e^x} \cr & {\text{Differentiating}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^2}{e^x}} \right] \cr & {\text{Using the formula }}\left( {fg} \right)' = fg' + gf',{\text{ let }}f = {x^2}{\text{ and }}g = {e^x} \cr & f'\left( x \right) = {x^2}\frac{d}{{dx}}\left[ {{e^x}} \right] + {e^x}\frac{d}{{dx}}\left[ {{x^2}} \right] \cr & {\text{Computing derivatives}} \cr & f'\left( x \right) = {x^2}\left( {{e^x}} \right) + {e^x}\left( {2x} \right) \cr & f'\left( x \right) = {x^2}{e^x} + 2x{e^x} \cr & {\text{Factoring}} \cr & f'\left( x \right) = \left( {{x^2} + 2x} \right){e^x} \cr & \cr & {\text{Find }}f''\left( x \right),{\text{ differentiating }}f'\left( x \right) \cr & f''\left( x \right) = \frac{d}{{dx}}\left[ {\left( {{x^2} + 2x} \right){e^x}} \right] \cr & {\text{Using the formula }}\left( {fg} \right)' = fg' + gf',{\text{ let }}f = {x^2} + 2x{\text{ and }}g = {e^x} \cr & f''\left( x \right) = \left( {{x^2} + 2x} \right)\frac{d}{{dx}}\left[ {{e^x}} \right] + {e^x}\frac{d}{{dx}}\left[ {{x^2} + 2x} \right] \cr & f''\left( x \right) = \left( {{x^2} + 2x} \right){e^x} + {e^x}\left( {2x + 2} \right) \cr & {\text{Factoring}} \cr & f''\left( x \right) = \left[ {\left( {{x^2} + 2x} \right) + \left( {2x + 2} \right)} \right]{e^x} \cr & f''\left( x \right) = \left( {{x^2} + 4x + 2} \right){e^x} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.