Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 182: 17

Answer

$g'\left( x \right) = - \frac{1}{2}{x^{ - 3/2}} + \frac{1}{4}{x^{ - 3/4}}$

Work Step by Step

$$\eqalign{ & g\left( x \right) = \frac{1}{{\sqrt x }} + \root 4 \of x \cr & {\text{Rewrite the function}} \cr & g\left( x \right) = {x^{ - 1/2}} + {x^{1/4}} \cr & {\text{Differentiate the function}} \cr & g'\left( x \right) = \frac{d}{{dx}}\left[ {{x^{ - 1/2}} + {x^{1/4}}} \right] \cr & {\text{Use the sum diffence rules for differentiation }} \cr & g'\left( x \right) = \frac{d}{{dx}}\left[ {{x^{ - 1/2}}} \right] + \frac{d}{{dx}}\left[ {{x^{1/4}}} \right] \cr & {\text{Apply the power rule: }}\frac{d}{{dx}}\left[ {{x^n}} \right] = n{x^{n - 1}} \cr & g'\left( x \right) = - \frac{1}{2}{x^{ - 1/2 - 1}} + \frac{1}{4}{x^{1/4 - 1}} \cr & g'\left( x \right) = - \frac{1}{2}{x^{ - 3/2}} + \frac{1}{4}{x^{ - 3/4}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.