Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 182: 23

Answer

$f'\left( x \right) = 3 + 2x$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{{3{x^2} + {x^3}}}{x} \cr & {\text{Rewrite the function}} \cr & f\left( x \right) = \frac{{3{x^2}}}{x} + \frac{{{x^3}}}{x} \cr & f\left( x \right) = 3x + {x^2} \cr & {\text{Differentiate}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {3x + {x^2}} \right] \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {3x} \right] + \frac{d}{{dx}}\left[ {{x^2}} \right] \cr & {\text{Use the constant multiple rule}} \cr & f'\left( x \right) = 3\frac{d}{{dx}}\left[ x \right] + \frac{d}{{dx}}\left[ {{x^2}} \right] \cr & {\text{Apply the power rule: }}\frac{d}{{dx}}\left[ {{x^n}} \right] = n{x^{n - 1}}{\text{ and }}\frac{d}{{dx}}\left[ x \right] = 1 \cr & f'\left( x \right) = 3\left( 1 \right) + 2x \cr & f'\left( x \right) = 3 + 2x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.