Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 181: 16

Answer

$h'\left( w \right) = \sqrt 2 $

Work Step by Step

$$\eqalign{ & h\left( w \right) = \sqrt 2 w - \sqrt 2 \cr & {\text{Differentiate the function}} \cr & h'\left( w \right) = \frac{d}{{dw}}\left[ {\sqrt 2 w - \sqrt 2 } \right] \cr & {\text{Use the sum diffence rules for differentiation }} \cr & h'\left( w \right) = \frac{d}{{dw}}\left[ {\sqrt 2 w} \right] - \frac{d}{{dw}}\left[ {\sqrt 2 } \right] \cr & {\text{Use the constant multiple rule}} \cr & h'\left( w \right) = \sqrt 2 \frac{d}{{dw}}\left[ w \right] - \frac{d}{{dw}}\left[ {\sqrt 2 } \right] \cr & {\text{Apply the rule: }}\frac{d}{{dw}}\left[ w \right] = 1 \cr & h'\left( w \right) = \sqrt 2 \left( 1 \right) - 0 \cr & {\text{Rewrite}} \cr & h'\left( w \right) = \sqrt 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.