Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 182: 18

Answer

$W'\left( t \right) = \frac{1}{{2\sqrt t }} - 2{e^t}$

Work Step by Step

$$\eqalign{ & W\left( t \right) = \sqrt t - 2{e^t} \cr & {\text{Rewrite the function}} \cr & W\left( t \right) = {t^{1/2}} - 2{e^t} \cr & {\text{Differentiate the function}} \cr & W'\left( t \right) = \frac{d}{{dt}}\left[ {{t^{1/2}} - 2{e^t}} \right] \cr & {\text{Use the sum diffence rules for differentiation }} \cr & W'\left( t \right) = \frac{d}{{dt}}\left[ {{t^{1/2}}} \right] - \frac{d}{{dt}}\left[ {2{e^t}} \right] \cr & {\text{Use the constant multiple rule}} \cr & W'\left( t \right) = \frac{d}{{dt}}\left[ {{t^{1/2}}} \right] - 2\frac{d}{{dt}}\left[ {{e^t}} \right] \cr & {\text{Apply the power rule: }}\frac{d}{{dt}}\left[ {{t^n}} \right] = n{t^{n - 1}}{\text{ and }}\frac{d}{{dt}}\left[ {{e^t}} \right] = {e^t} \cr & W'\left( t \right) = \frac{1}{2}{t^{1/2 - 1}} - 2\left( {{e^t}} \right) \cr & W'\left( t \right) = \frac{1}{2}{t^{ - 1/2}} - 2{e^t} \cr & W'\left( t \right) = \frac{1}{{2\sqrt t }} - 2{e^t} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.