Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 182: 24

Answer

$f'\left( x \right) = - \frac{3}{{2{x^{5/2}}}} - \frac{1}{{{x^2}}}$

Work Step by Step

$$\eqalign{ & y = \frac{{\sqrt x + x}}{{{x^2}}} \cr & {\text{Rewrite the function}} \cr & y = \frac{{\sqrt x }}{{{x^2}}} + \frac{x}{{{x^2}}} \cr & y = \frac{1}{{{x^{3/2}}}} + \frac{1}{x} \cr & y = {x^{ - 3/2}} + {x^{ - 1}} \cr & {\text{Differentiate}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^{ - 3/2}} + {x^{ - 1}}} \right] \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^{ - 3/2}} + {x^{ - 1}}} \right] \cr & {\text{Use the constant multiple rule}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^{ - 3/2}}} \right] + \frac{d}{{dx}}\left[ {{x^{ - 1}}} \right] \cr & {\text{Apply the power rule: }}\frac{d}{{dx}}\left[ {{x^n}} \right] = n{x^{n - 1}}{\text{ }} \cr & f'\left( x \right) = - \frac{3}{2}{x^{ - 3/2 - 1}} - {x^{ - 1 - 1}} \cr & f'\left( x \right) = - \frac{3}{2}{x^{ - 5/2}} - {x^{ - 2}} \cr & {\text{Rewrite}} \cr & f'\left( x \right) = - \frac{3}{{2{x^{5/2}}}} - \frac{1}{{{x^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.