Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 182: 31

Answer

$$D'(t)=\frac{-3-16t^2}{64t^4}$$

Work Step by Step

$$D(t)=\frac{1+16t^2}{(4t)^3}$$ $$D(t)=\frac{1+16t^2}{64t^3}$$ $$D(t)=\frac{1}{64t^3}+\frac{1}{4t}$$ $$D(t)=\frac{1}{64}t^{-3}+\frac{1}{4}t^{-1}$$ Therefore, the derivative of $D(t)$ is $$D'(t)=\frac{1}{64}\frac{d}{dt}(t^{-3})+\frac{1}{4}\frac{d}{dt}(t^{-1})$$ $$D'(t)=\frac{1}{64}\times(-3)t^{-4}+\frac{1}{4}\times(-1)t^{-2}$$ $$D'(t)=\frac{-3}{64t^4}-\frac{1}{4t^2}$$ $$D'(t)=\frac{-3-16t^2}{64t^4}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.