Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 182: 35

Answer

$\frac{{dy}}{{dx}} = 2tx + {t^3}{\text{ and }}\frac{{dy}}{{dt}} = {x^2} + 3{t^2}x$

Work Step by Step

$$\eqalign{ & y = t{x^2} + {t^3}x \cr & {\text{Find }}\frac{{dy}}{{dx}} \cr & {\text{Take the derivative of both sides with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {t{x^2}} \right] + \frac{d}{{dx}}\left[ {{t^3}x} \right] \cr & {\text{Consider }}t{\text{ as a constant}} \cr & \frac{{dy}}{{dx}} = t\frac{d}{{dx}}\left[ {{x^2}} \right] + {t^3}\frac{d}{{dx}}\left[ x \right] \cr & {\text{Compute derivatives}} \cr & \frac{{dy}}{{dx}} = t\left( {2x} \right) + {t^3}\left( 1 \right) \cr & {\text{Simplify}} \cr & \frac{{dy}}{{dx}} = 2tx + {t^3} \cr & \cr & {\text{Find }}\frac{{dy}}{{dt}} \cr & {\text{Differentiate the function with respect to }}t \cr & \frac{{dy}}{{dt}} = \frac{d}{{dt}}\left[ {t{x^2}} \right] + \frac{d}{{dt}}\left[ {{t^3}x} \right] \cr & {\text{Consider }}x{\text{ as a constant}} \cr & \frac{{dy}}{{dt}} = {x^2}\frac{d}{{dt}}\left[ t \right] + x\frac{d}{{dt}}\left[ {{t^3}} \right] \cr & {\text{Compute derivatives}} \cr & \frac{{dy}}{{dt}} = {x^2}\left( 1 \right) + x\left( {3{t^2}} \right) \cr & {\text{Simplify}} \cr & \frac{{dy}}{{dt}} = {x^2} + 3{t^2}x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.