Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 182: 29

Answer

$$F'(z)=-\frac{1}{z^2}(\frac{2A}{z}+B)$$

Work Step by Step

$$F(z)=\frac{A+Bz+Cz^2}{z^2}$$ $$F(z)=\frac{A}{z^2}+\frac{B}{z}+C$$ $$F(z)=Az^{-2}+Bz^{-1}+C$$ Therefore, the derivative of $F(z)$ is $$F'(z)=A\frac{d}{dz}(z^{-2})+B\frac{d}{dz}(z^{-1})+\frac{d}{dz}(C)$$ $$F'(z)=A\times(-2)z^{-3}+B\times(-1)z^{-2}+0$$ $$F'(z)=-2Az^{-3}-Bz^{-2}$$ $$F'(z)=-z^{-2}(2Az^{-1}+B)$$ $$F'(z)=-\frac{1}{z^2}(\frac{2A}{z}+B)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.