Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 182: 25

Answer

$G'\left( r \right) = \frac{3}{2}{r^{ - 1/2}} + \frac{3}{2}{r^{1/2}}$

Work Step by Step

$$\eqalign{ & G\left( r \right) = \frac{{3{r^{3/2}} + {r^{5/2}}}}{r} \cr & {\text{Rewrite the function}}{\text{, distribute the numerator}} \cr & G\left( r \right) = \frac{{3{r^{3/2}}}}{r} + \frac{{{r^{5/2}}}}{r} \cr & {\text{Simplify}} \cr & G\left( r \right) = 3{r^{1/2}} + {r^{3/2}} \cr & {\text{Differentiating}} \cr & G'\left( r \right) = \frac{d}{{dr}}\left[ {3{r^{1/2}} + {r^{3/2}}} \right] \cr & {\text{Use the sum rule for derivatives}} \cr & G'\left( r \right) = \frac{d}{{dr}}\left[ {3{r^{1/2}}} \right] + \frac{d}{{dr}}\left[ {{r^{3/2}}} \right] \cr & G'\left( r \right) = 3\frac{d}{{dr}}\left[ {{r^{1/2}}} \right] + \frac{d}{{dr}}\left[ {{r^{3/2}}} \right] \cr & {\text{Use the power rule }}\frac{d}{{dr}}\left[ {{r^n}} \right] = n{r^{n - 1}} \cr & G'\left( r \right) = 3\left( {\frac{1}{2}{r^{1/2 - 1}}} \right) + \frac{3}{2}{r^{3/2 - 1}} \cr & G'\left( r \right) = \frac{3}{2}{r^{ - 1/2}} + \frac{3}{2}{r^{1/2}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.