Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 182: 19

Answer

$f'\left( x \right) = 4{x^3} + 9{x^2}$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {x^3}\left( {x + 3} \right) \cr & {\text{Rewrite the function using the distributive property}} \cr & f\left( x \right) = {x^4} + 3{x^3} \cr & {\text{Differentiate the function}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^4} + 3{x^3}} \right] \cr & {\text{Use the sum rule for differentiation }} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^4}} \right] + \frac{d}{{dx}}\left[ {3{x^3}} \right] \cr & {\text{Use the constant multiple rule}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^4}} \right] + 3\frac{d}{{dx}}\left[ {{x^3}} \right] \cr & {\text{Apply the power rule: }}\frac{d}{{dx}}\left[ {{x^n}} \right] = n{x^{n - 1}}{\text{ }} \cr & f'\left( x \right) = 4{x^3} + 3\left( {3{x^2}} \right) \cr & f'\left( x \right) = 4{x^3} + 9{x^2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.