Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.5 - Multiplying with More Than One Term and Rationalizing Denominators - Exercise Set - Page 550: 73

Answer

$-\displaystyle \frac{6\sqrt[3]{xy}}{x^{2}y^{3}}$

Work Step by Step

Simplify the denominator using the following: $\sqrt[3]{-8}=\sqrt[3]{(-2)^{3}}=-2$ $\sqrt[3]{x^{5}}=\sqrt[3]{x^{3}\times x^{2}}=\sqrt[3]{x^{3}}\times\sqrt[3]{x^{2}}=x\sqrt[3]{x^{2}}$ $\sqrt[3]{y^{8}}=\sqrt[3]{(y^{2})^{3}\times y^{2}}=\sqrt[3]{(y^{2})^{3}}\times\sqrt[3]{y^{2}}=y^{2}\sqrt[3]{y^{2}}$ $\displaystyle \frac{12}{\sqrt[3]{-8x^{5}y^{8}}}=\frac{12}{-2\times x\sqrt[3]{x^{2}}\times y^{2}\sqrt[3]{y^{2}}}=-\frac{12}{2xy^{2}\sqrt[3]{x^{2}y^{2}}}$ ...(cancel 2) We rationalize with the goal of obtaining $\sqrt[3]{x^{3}y^{3}}$ $=-\displaystyle \frac{6}{xy^{2}\sqrt[3]{x^{2}y^{2}}} \displaystyle \color{red}{ \cdot\frac{\sqrt[3]{xy}}{\sqrt[3]{xy}} }\qquad$ (rationalize) $=-\displaystyle \frac{6\sqrt[3]{xy}}{xy^{2}\sqrt[3]{x^{3}y^{3}}}$ $=-\displaystyle \frac{6\sqrt[3]{xy}}{xy^{2}\times xy}$ $=-\displaystyle \frac{6\sqrt[3]{xy}}{x^{2}y^{3}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.