Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.5 - Multiplying with More Than One Term and Rationalizing Denominators - Exercise Set - Page 550: 65

Answer

$\displaystyle \frac{3\sqrt{3y}}{xy}$

Work Step by Step

Simpify the denominator using $\sqrt[n]{a}\times\sqrt[n]{b}=\sqrt[n]{ab},\qquad$ and $\sqrt[n]{a^{n}}=(\sqrt[n]{a})^{n}=a$ (for positive a). $\sqrt{3x^{2}y}=\sqrt{x^{2}\times 3y}=\sqrt{x^{2}}\times\sqrt{3y} = x\sqrt{3y}$ $... =\displaystyle \frac{9}{x\sqrt{3y}}$ $\displaystyle \color{red}{ \cdot\frac{\sqrt{3y}}{\sqrt{3y}} }\qquad$ (rationalize) $=\displaystyle \frac{9\sqrt{3y}}{x(\sqrt{3y})^{2}}$ $=\displaystyle \frac{9\sqrt{3y}}{x(3y)}$ $\qquad$ ... reduce 3, the common factor = $\displaystyle \frac{3\sqrt{3y}}{xy}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.