Answer
$\dfrac{5\sqrt[3]{2x}}{x}$
Work Step by Step
RECALL:
For any real number $a$,
$\sqrt[3]{a^3}= a$
Rationalize the denominator by multiplying $\sqrt[3]{2x}$ to both the numerator and the denominator. Simplify using the rule above to obtain:
$\require{cancel}
=\dfrac{10 \cdot \sqrt[3]{2x}}{\sqrt[3]{4x^2} \cdot \sqrt[3]{2x}}
\\=\dfrac{10\sqrt[3]{2x}}{\sqrt[3]{8x^3}}
\\=\dfrac{10\sqrt[3]{2x}}{\sqrt[3]{2^3x^3}}
\\=\dfrac{10\sqrt[3]{2x}}{2x}
\\=\dfrac{5\cancel{10}\sqrt[3]{2x}}{\cancel{2}x}
\\=\dfrac{5\sqrt[3]{2x}}{x}$