Answer
$3\sqrt[3]{2}$
Work Step by Step
RECALL:
For any real number $a$,
$\sqrt[3]{a^3}= a$
Rationalize the denominator by multiplying $\sqrt[3]{2}$ to both the numerator and the denominator. Simplify using the rule above to obtain:
$\require{cancel}
=\dfrac{6 \cdot \sqrt[3]{2}}{\sqrt[3]{4} \cdot \sqrt[3]{2}}
\\=\dfrac{6\sqrt[3]{2}}{\sqrt[3]{8}}
\\=\dfrac{6\sqrt[3]{2}}{\sqrt[3]{2^3}}
\\=\dfrac{6\sqrt[3]{2}}{2}
\\=\dfrac{3\cancel{6}\sqrt[3]{2}}{\cancel{2}}
\\=3\sqrt[3]{2}$