Answer
$\sqrt{30}+\sqrt{33}+2\sqrt{5}+\sqrt{22}$
Work Step by Step
$\sqrt{a}\times\sqrt{b}=\sqrt{ab}$ and
$\sqrt{a^{2}}=(\sqrt{a})^{2}=a$ (for positive a).
$F:\quad \sqrt{3}\times\sqrt{10}=\sqrt{30}$
$O:\quad \sqrt{3}\times\sqrt{11}=\sqrt{33}$
$I:\quad \sqrt{2}\times\sqrt{10}=\sqrt{2\times 10}=\sqrt{2\times 2\times 5}=\sqrt{2^{2}\times 5}=\sqrt{2^{2}}\times\sqrt{5}=2\sqrt{5}$
$L:\quad \sqrt{2}\times\sqrt{11}=\sqrt{22}$
Add the terms (there are no like terms)
$...$= $\sqrt{30}+\sqrt{33}+2\sqrt{5}+\sqrt{22}$