Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 436: 23

Answer

$-\frac{12}{5}$.

Work Step by Step

The given expression is $=\frac{\frac{3}{x+2}-\frac{3}{x-2}}{\frac{5}{x^2-4}}$ Factor the term $x^2-4$ Use the algebraic identity $a^2-b^2=(a+b)(a-b)$. $=x^2-2^2$ $=(x+2)(x-2)$ $=\frac{\frac{3}{x+2}-\frac{3}{x-2}}{\frac{5}{(x+2)(x-2)}}$ Multiply the numerator and the denominator by $(x+2)(x-2)$. $=\frac{(x+2)(x-2)}{(x+2)(x-2)}\cdot \frac{\frac{3}{x+2}-\frac{3}{x-2}}{\frac{5}{(x+2)(x-2)}}$ Use the distributive property. $=\frac{(x+2)(x-2) \cdot \frac{3}{x+2}-(x+2)(x-2) \cdot \frac{3}{x-2}}{(x+2)(x-2) \cdot\frac{5}{(x+2)(x-2)}}$ Simplify. $=\frac{3(x-2) -3(x+2)}{5}$ $=\frac{3x-6 -3x-6}{5}$ $=\frac{-12}{5}$ $=-\frac{12}{5}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.