Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 436: 47

Answer

$f(\frac{1}{x+3})= \frac{x+4}{x+2}$.

Work Step by Step

The given function is $\Rightarrow f(x)=\frac{1+x}{1-x}$ Replace $x$ with $\frac{1}{x+3}$. $\Rightarrow f(\frac{1}{x+3})=\frac{1+\frac{1}{x+3}}{1-\frac{1}{x+3}}$ Multiply the numerator and the denominator by $(x+3)$. $\Rightarrow f(\frac{1}{x+3})= \frac{(x+3)\left (1+\frac{1}{x+3}\right )}{(x+3)\left (1-\frac{1}{x+3}\right )}$ Use the distributive property. $\Rightarrow f(\frac{1}{x+3})= \frac{1(x+3)+\frac{1(x+3)}{x+3}}{1(x+3)-\frac{1(x+3)}{x+3}}$ Simplify. $\Rightarrow f(\frac{1}{x+3})= \frac{x+3+1}{x+3-1}$ $\Rightarrow f(\frac{1}{x+3})= \frac{x+4}{x+2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.