Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 436: 43

Answer

$ 6$.

Work Step by Step

The given expression is $\Rightarrow \frac{3}{1-\frac{3}{3+x}}-\frac{3}{\frac{3}{3-x}-1}$ Solve the denominator of the first fraction. $=1-\frac{3}{3+x}$ $=\frac{1}{1}-\frac{3}{3+x}$ The LCD of the denominators is $(3+x)$. $=\frac{3+x}{3+x}-\frac{3}{3+x}$ $=\frac{3+x-3}{3+x}$ Simplify. $=\frac{x}{3+x}$ Solve the denominator of the second fraction. $=\frac{3}{3-x}-1$ $=\frac{3}{3-x}-\frac{1}{1}$ The LCD of the denominators is $(3-x)$. $=\frac{3}{3-x}-\frac{3-x}{3-x}$ $=\frac{3-(3-x)}{3-x}$ Simplify. $=\frac{3-3+x}{3-x}$ $=\frac{x}{3-x}$ Back substitute all values into the given fraction. $\Rightarrow \frac{3}{\frac{x}{3+x}}-\frac{3}{\frac{x}{3-x}}$ Invert the divisor and multiply. $\Rightarrow 3\cdot \frac{3+x}{x}-3\cdot \frac{3-x}{x}$ $\Rightarrow \frac{3(3+x)}{x}-\frac{3(3-x)}{x}$ $\Rightarrow \frac{9+3x}{x}-\frac{9-3x}{x}$ $\Rightarrow \frac{9+3x-(9-3x)}{x}$ $\Rightarrow \frac{9+3x-9+3x}{x}$ Simplify. $\Rightarrow \frac{6x}{x}$ Cancel common terms. $\Rightarrow 6$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.