Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 436: 41

Answer

$\Rightarrow -\frac{4}{(x+2)(x-2)}$.

Work Step by Step

The given expression is $\Rightarrow \frac{\frac{x-1}{x^2-4}}{1+\frac{1}{x-2}}-\frac{1}{x-2}$ Solve the numerator of the first fraction. $=\frac{x-1}{x^2-4}$ Factor all terms. $= x^2-4$ $= x^2-2^2$ Use the special formula $A^2-B^2=(A+B)(A-B)$. $= (x+2)(x-2)$ $=\frac{x-1}{(x+2)(x-2)}$ Solve the denominator of the first fraction. $=1+\frac{1}{x-2}$ $=\frac{1}{1}+\frac{1}{x-2}$ The LCD of the denominators is $(x-2)$. $=\frac{(x-2)}{(x-2)}+\frac{1}{x-2}$ $=\frac{x-2+1}{(x-2)}$ Simplify. $=\frac{x-1}{x-2}$ Back substitute all values into the given fraction. $\Rightarrow \frac{\frac{x-1}{(x+2)(x-2)}}{\frac{x-1}{x-2}}-\frac{1}{x-2}$ Invert the divisor and multiply. $\Rightarrow \frac{x-1}{(x+2)(x-2)}\cdot \frac{x-2}{x-1}-\frac{1}{x-2}$ Cancel common terms. $\Rightarrow \frac{1}{x+2}-\frac{1}{x-2}$ The LCD of the denominators is $(x+2)(x-2)$. $\Rightarrow \frac{x-2}{(x+2)(x-2)}-\frac{x+2}{(x+2)(x-2)}$ $\Rightarrow \frac{x-2-(x+2)}{(x+2)(x-2)}$ Simplify. $\Rightarrow \frac{x-2-x-2}{(x+2)(x-2)}$ $\Rightarrow -\frac{4}{(x+2)(x-2)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.