Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 436: 44

Answer

$ 10$.

Work Step by Step

The given expression is $\Rightarrow \frac{5}{1-\frac{5}{5+x}}-\frac{5}{\frac{5}{5-x}-1}$ Solve the denominator of the first fraction. $=1-\frac{5}{5+x}$ $=\frac{1}{1}-\frac{5}{5+x}$ The LCD of the denominators is $(5+x)$. $=\frac{5+x}{5+x}-\frac{5}{5+x}$ $=\frac{5+x-5}{5+x}$ Simplify. $=\frac{x}{5+x}$ Solve the denominator of the second fraction. $=\frac{5}{5-x}-1$ $=\frac{5}{5-x}-\frac{1}{1}$ The LCD of the denominators is $(5-x)$. $=\frac{5}{5-x}-\frac{5-x}{5-x}$ $=\frac{5-(5-x)}{5-x}$ Simplify. $=\frac{5-5+x}{5-x}$ $=\frac{x}{5-x}$ Back substitute all values into the given fraction. $\Rightarrow \frac{5}{\frac{x}{5+x}}-\frac{5}{\frac{x}{5-x}}$ Invert the divisor and multiply. $\Rightarrow 5\cdot \frac{5+x}{x}-5\cdot \frac{5-x}{x}$ $\Rightarrow \frac{5(5+x)}{x}-\frac{5(5-x)}{x}$ Apply the distributive property. $\Rightarrow \frac{25+5x}{x}-\frac{25-5x}{x}$ $\Rightarrow \frac{25+5x-(25-5x)}{x}$ $\Rightarrow \frac{25+5x-25+5x}{x}$ Simplify. $\Rightarrow \frac{10x}{x}$ Cancel common terms. $\Rightarrow 10$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.