Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 436: 39

Answer

$\frac{3a(a-3)}{(a+4)(3a-5)}$.

Work Step by Step

The given expression is $\Rightarrow \frac{\frac{2}{a^2+2a-8}+\frac{1}{a^2+5a+4}}{\frac{1}{a^2-5a+6}+\frac{2}{a^2-a-2}}$ First solve the numerator. $=\frac{2}{a^2+2a-8}+\frac{1}{a^2+5a+4}$ Factor all terms. $\Rightarrow a^2+2a-8$ Rewrite the middle term $2a$ as $4a-2a$. $\Rightarrow a^2+4a-2a-8$ Group terms. $\Rightarrow (a^2+4a)+(-2a-8)$ Factor each group. $\Rightarrow a(a+4)-2(a+4)$ Factor out $(a+4)$. $\Rightarrow (a+4)(a-2)$ $\Rightarrow a^2+5a+4$ Rewrite the middle term $5a$ as $4a+1a$. $\Rightarrow a^2+4a+1a+4$ Group terms. $\Rightarrow (a^2+4a)+(1a+4)$ Factor each group. $\Rightarrow a(a+4)+1(a+4)$ Factor out $(a+4)$. $\Rightarrow (a+4)(a+1)$ Substitute back all factors. $=\frac{2}{(a+4)(a-2)}+\frac{1}{(a+4)(a+1)}$ The LCD of the denominators is $(a+4)(a+1)(a-2)$. $=\frac{2(a+1)}{(a+4)(a+1)(a-2)}+\frac{1(a-2)}{(a+4)(a+1)(a-2)}$ $=\frac{2(a+1)+1(a-2)}{(a+4)(a+1)(a-2)}$ $=\frac{2a+2+a-2}{(a+4)(a+1)(a-2)}$ Simplify. $=\frac{3a}{(a+4)(a+1)(a-2)}$ Now solve the denominator of the given fraction. $=\frac{1}{a^2-5a+6}+\frac{2}{a^2-a-2}$ Factor all the terms. $\Rightarrow a^2-5a+6$ Rewrite the middle term $-5a$ as $-3a-2a$. $\Rightarrow a^2-3a-2a+6$ Group terms. $\Rightarrow (a^2-3a)+(-2a+6)$ Factor each group. $\Rightarrow a(a-3)-2(a-3)$ Factor out $(a-3)$. $\Rightarrow (a-3)(a-2)$ $\Rightarrow a^2-a-2$ Rewrite the middle term $-a$ as $-2a+a$. $\Rightarrow a^2-2a+a-2$ Group terms. $\Rightarrow (a^2-2a)+(a-2)$ Factor each group. $\Rightarrow a(a-2)+1(a-2)$ Factor out $(a-2)$. $\Rightarrow (a-2)(a+1)$ Substitute back all factors. $=\frac{1}{(a-3)(a-2)}+\frac{2}{(a-2)(a+1)}$ The LCD of the denominators is $(a-3)(a-2)(a+1)$. $=\frac{a+1}{(a-3)(a-2)(a+1)}+\frac{2(a-3)}{(a-3)(a-2)(a+1)}$ $=\frac{a+1+2(a-3)}{(a-3)(a-2)(a+1)}$ $=\frac{a+1+2a-6}{(a-3)(a-2)(a+1)}$ Simplify. $=\frac{3a-5}{(a-3)(a-2)(a+1)}$ Back substitute all values into the given fraction. $\Rightarrow \frac{\frac{3a}{(a+4)(a+1)(a-2)}}{\frac{3a-5}{(a-3)(a-2)(a+1)}}$ Invert the divisor and multiply. $\Rightarrow \frac{3a}{(a+4)(a+1)(a-2)}\cdot \frac{(a-3)(a-2)(a+1)}{3a-5}$ Cancel common terms. $\Rightarrow \frac{3a(a-3)}{(a+4)(3a-5)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.